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ABSTRACT 

We consider the problem of tracking multiple maneuvering tar- 
gets in clutter using switching multiple target motion models. 
A novel suboptimal filtering algorithm is developed by applying 
the basic interacting multiple model (IMM) approach, the joint 
probabilistic data association (JPDA) technique and coupled tar- 
get state estimation to a Markovian switching system. In past 
such an approach has been considered using uncoupled target 
state estimation. The algorithm is illustrated via a simulation 
example involving tracking of two highly maneuvering, at times 
closely spaced, targets. In the presented example, the proposed 
IMM/JPDA coupled filter outperforms an existing IMM/JPDA 
uncoupled filter. 

1.    INTRODUCTION 

We consider the problem of tracking multiple maneuvering tar- 
gets in clutter. This class of problem has received considerable* 
attention in the literature [3],[6],[7|, [13], [14]. The switching 
multiple model approach has been found to be quite effective 
in modeling highly maneuvering targets [1], [3], [5]-[8], [12]. In 
this approach various "modes" of target motion are represented 
by distinct kinematic models, and in a Bayesian framework, the 
target maneuvers are modeled by switchings among these mod- 
els controlled by a Markov chain. In the presence of clutter, the 
measurements at the sensors may not all have originated from 
the target-of-interest. In this case one has to solve the problem of 
data association. An effective approach in a Bayesian framework 
is that of probabilistic data association (PDA) [3], [5] for a single 
target in clutter and that of joint probabilistic data association 
(JPDA) [3], [6], [13] for multiple targets in clutter. 

It is assumed that the number of targets is known (say N) 
and that for each target, a track has been formed (initiated) 
and our objective is that of track maintenance. In [15] such a 
problem has been considered for a single target using multiple 
sensors, PDA and switching multiple models. The optimal solu- 
tion (in the minimum mean-square error sense) to target state 
estimation given sensor measurements and absence of clutter, re- 
quires exponentially increasing (with time) computational com- 
plexity; therefore, one has to resort to suboptimal approxima- 
tions. For the switching multiple model approach, the interact- 
ing multiple model (IMM) algorithm of [8] has been found to 
offer a good compromise between the computational and storage 
requirements and estimation accuracy [16]. In the presence of 
clutter, one has to account for mesisurements of uncertain origin 
(target or clutter?). Here too, in a Bayesian framework, one has 
to resort to approximations to reduce the computational com- 
plexity, resulting in the PDA filter [12], [3], [6], [2], [15]. In [15] 
the IMM algorithm has been combined with the PDA filter in a 
multiple sensor scenario to propose a combined IMM/MSPDAF 
(interacting multiple model/ multisensor probabilistic data asso- 
ciation filter) algorithm. In [3], [13] and [14] multiple targets in 
clutter (but without using switching multiple models) have been 
considered using JPDA filter which, unlike the PDA filter, ac- 
counts for the interference from other targets. Various versions 
of IMMJPDA filters for multiple target tracking using switching 
multiple models may be found in [4], Sec. 6 of T6], [10] and [11]. 
While [10] and [11] present uncoupled filters (i.e. assume that 
different target states are mutually independent conditioned on 
the past measurements), [4] and [6] present IMMJPDA coupled 
filters where the conditional target state independence assump- 
tion is not made. This assumption is false when the targets are 
closely spaced thereby "sharing" measurements (Sec. 6 of [6]). 
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It has been noted in [9] that the IMMJPDA coupled filter equa- 
tions of [4] and [6] are heuristic. [9] presents an "exact" JPDA 
coupled filter for non-switching models using the framework of a 
linear descriptor system with stochastic coefficients. 

In this paper we extend the approach of [10] which pertains to 
uncoupled filtering, to IMMJPDA coupled filtering. The only ap- 
proximations made are those typical for IMM approaches; there 
are no other heuristics as in [4] and [6]. Furthermore, we use the 
standard Markovian switching state-space systems; unlike [9], a 
linear descriptor system framework is not necessary. 

In this paper we exploit the basic structure of [15] in com- 
bination with the JPDA algorithm of [3] and [13] to propose 
a novel IMM/JPDA coupled filtering algorithm. As in [15] it 
is assumed that the sensors are collocated and (time) synchro- 
nized with the sampling rate. Track initialization (formation) is 
£issumed to have been made for each target. "Standard" assump- 
tions are used for JPDAF ([13], p. 310 of [6]): a measurement 
can have only one source; among the possibly several validated 
measurements, at most one of them can be target-originated and 
the remaining validated measurements are assumed to be due to 
false alarms or clutter, and are modeled as independently and 
identically distributed (i.i.d.) with uniform spatial distribution 
over the entire validation region ("across all targets"). Also, as in 
[15] and [14], we use sequential updating of the state estimates 
with measurements (i.e. updating the state estimates sequen- 
tially with measurements from different sensors). 

2.    PROBLEM FORMULATION 

Assume that there are total N targets with the target set denoted 
as TN ■= {1,2, • • •, N}. Assume that the dynamics of each tar- 
get can be modeled as one of the n hypothesized models. The 
model set is denoted as Mn '■= {1,2, • • •, n} and there are total 
q sensors. For target r (r e Tjv), the event that model t is in 
effect during the sampling period (tfc_i,tfc] will be denoted by 
M^(r). Although all the targets share a common model set, any 
two targets may be in different motion status from time to time. 

For the j-th hypothesized model (mode), the state dynamics 
and measurements of target r {r £ Tjv) are modeled as 

Xk{r) = Fi_,(r)x;,_,(r) + ai_,{r)vi_^(r) (1) 

and 
4i^)=h'-\xk(r)) + wi''ir)    for    / = l,---,g (2) 

where Xk{r) is the system state of target r at t*. and of dimension 
rix (assuming all targets share a common state space), zl{r) is 
the (true) measurement vector (i.e. due to target r) from sensor 
/ at tfc and of dimension n^i, FjJ_i(r) and GJ^_^(r) are the sys- 
tem matrices when model j is in effect over the sampling period 
(*fc-li*fc] for target r and h^<' is the nonlinear transformation 
of Xkir) to zj^{r) (l = 1,2, ■■■ ,q) for model j. A first-order lin- 
earized version of (2) is given by 

4ir)^Hi'\r)xk(.r) + wi'\r)    for   l = l,--,q       (3) 

where H^' (r) is the Jacobian matrix of W"' evaluated at some 
value of the estimate of state xfc(r) (see Sec. 3.). The nature of 
the system state, the various matrices in (1) and (3), and the 
measurements is specified in more detail in Sec. 4.. The process 
noise ffc_j(r) and the measurement noise w^''(r) are mutually 
uncorrelated zero-mean white Gaussian processes with covari- 
ance matrices Q^_i (same for all targets) and Rj^' (same for all 
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targets), respectively. At the initial time fo, the initial conditions 
for the system state of target r under each model j are assumed 
to be Gaussian random variables with the known mean Xg(r) 

and the known covariance Po(r). The probability of target r in 

model j at to, A'o('') = ^{A^o(^)}' '^ ^'^° assumed to be known. 
The switching from model Af^_j(r) to model M^(r) is governed 
by a finite-state stationary Markov chain (same for all targets) 
with known transition probabilities pij = P{Ml{r)\M^_^(r)}. 
Henceforth, tfc will be denoted by k. 

In coupled state estimation the states of all targets are esti- 
mated jointly [6]. To this end define the "global" state 

Xk :=col{xA:(l), Xk(2), ■■■ ,Xk{N)} (4) 

and the corresponding matrices/vectors 

J := col {ji, J2, ■ ■ ■ ,JN} 1   jm € Mn IS model j for target m, 
(5) 

F/ := block - diag {Ff (1), Ff (2), • • • , F^^ (N)] ,       (6) 

Gi := block - diag {0^' (1), G^^(2), • • ■ , G^" (N)} ,       (7) 

vi := col {4' (1), 4^ (2), ■■■,vi''{N)}. (8) 

Then we have the state equation for the N targets as 

Xfc = Ffc^_iifc_i-t-GiJ_it;^_i (9) 

where Eiv^vi'} = Q^ ~ block - diag {Q{' , ■ • ■ , Q^" }• Simi- 
larly define the global measurement vector at sensor I as 

4:=col{4(l),4(2),...,4(JV)} (10) 

and the corresponding vectors 

h-'''{xk) := col{Vi''(a;fc(l)), ••■ ,h'^''{xk{N))} , (11) 

t^;^-' := col {wi' (1), u;^^ (2), • ■. , ^'^ (N)} (12) 

where E{w^''w^'^'}  = R^''  := block - diag {Rj,', ••• .fi^"}. 
Then the measurement equation for N targets at sensor I (as- 
suming no clutter and perfect detections) is given by 

zl=h'^''ixk)+WJ^''    for    l=l,---,q. (13) 

Following (3), a first-order linearized version of (13) is given by 

4 = //^''a;fc+tUfc''    for    / = l,---,g (14) 

where 

Hjl'' := diag {//^'•'(!), H^=''(2), •■• HI''-\N)} ,        (15) 

Following (5), define the global mode 

M^:={Ml^(l),...,Mi^(N)}. (16) 

The various targets are assumed to evolve independently of each 
other. Therefore, the transition probability for the global modes 
are given by 

PIJ ~ P{M^'(1), ••-, M^>'(Ar)|M-Li(l), ■■•, M^C:iW} 

(17) 

Similarly we have 

^^ := P{Mi,^ (1), .. ■, M^'' (N)} = J] t^i' (l).        (18) 

N 

The following notations and definitions are used regarding the 
measurements at sensor l. Note that, in general, at any time k, 
some measurements may be due to clutter and some due to the 
target, i.e. there can be more than a single measurement at time 
k at sensor /. The measurement set (not yet validated) generated 
by sensor I at time k is denoted as 

zl •= /^'(i> H'' 1(2) Ji'^l) } (19) 

where mi is the number of measurements generated by sensor I 
at time fc. Variable z^^' (t = 1, ■ • •, m.;) is the tth measurement 
within the set. The validated set of measurements of sensor / at 
time A; will be denoted by V^, containing mi (< rn;) measurement 
vectors. The cumulative set of validated measurements from 
sensor I up to time k is denoted as 

z',^'^ = {Yl,Yir--,Yl}. (20) 

The cumulative set of validated measurements from all sensors 
up to time k is denoted as 

Z^ = {Z'^'-'>,Z\ fc(i)  -fc(2) rH9) } (21) 

where q is the number of sensors. 
Assuming there are no unresolved measurements (i.e. mea- 

surement associated with two or more targets simultaneously), 
any measurement therefore is either associated with a target or 
caused by clutter. Our goal is to find the global state estimate 

xk^k := E{xk\Z^} (22) 

and the associated error covariance matrix 

Pk\k = E[[xk - Jfc|fc][a;fc - Xk]kY\Z^} (23) 

where a;j^ denotes the transpose of x^- Included in the above 
formulation is state estimates of individual targets. 

3.    IMM/JPDA COUPLED FILTERING 
ALGORITHM 

We now modify the IMM/JPDA algorithm of [10] to apply to 
the coupled system (4)-(18); it will be called IMM/JPDACF 
(CF stands for coupled filter). The approach of [10], in turn, 
is based on the approaches of [15], [13], [6] and [3J. As in [15] 
and [10], for convenience, we confine our attention to the case of 
2 sensors; however, the algorithm can be easily adapted to the 
case of arbitrary q sensors. As the IMM/MSPDAF algorithm is 
well-explained in [15] and Sec. 4.5 of [6], the JPDAF algorithm 
is well-explained in Sec. 6.2 of [6] and Sec. 9.3 of [3] and the 
IMM/JPDA filter is given in detail in [10] (where all the under- 
lying assumptions and approximations may be found in further 
detail), we will only briefly outline the basic steps in "one cycle" 
(i.e. processing needed to update for a new set of measurements) 
of the IMM/JPDA coupled filter. 

Assumed available:     Given the state estimate x/  ,,,    ,' := 
K—l|fc—1 

E{xk-i\M^_^,Z.^~ }, the associated covariance Pi_i\i._-, and 

the conditional mode probability fii^ = P[Af/_, |2J°~^] at time 

fc — 1 for each global mode J G Mn '■— Mn x • • • x Mn- 

Step 3.1. Interaction — mixing of the estimate from the 
previous time (VJ € Mn)'- 

predicted mode probability: 

^i- := P{Mi\Z'^-'} = Y^Put^U. 
I 

mixing probability: 

A.^1^ := P{MU\Mi,Zl-^}=punUj^i-. 

mixed estimate; 

1=1 

7li,^k-x--=E{xk-x\Mi,Zl-'}^Yj^i_,^^_,t. n^J 

(24) 

(25) 

(26) 



covariance of the mixed estimate: 

= ^_^{Pfc-l|fc-l + Ffc-l|*:-l~^fc-l|fc-llFA:-l|fc-l~'^*;-l|fc-ll }''       • 

(27) 

Step 3.2. Predicted state and measurements for Sensor 
1   (VJeMn): 

State prediction: 

<\k-i ~ E{xk\Mi^,zr'} = •Fr-i5);ii|fc_r       (28) 

State prediction error covariance: 

= FLiP^k-Hk-iF^i + Gi_,Qi_,Gi'_,.      (29) 

Using (2) and (28), the global mode-conditioned predicted mea- 
surement for sensor 1 is 

2j.'   :— h • (a:fc|fc_i). (30) 

Using   the   linearized   version   (14),    the   covariance   of   the 

mode-conditioned residual v. J,i(/) 

col{z l(il) l(»w) , 2^^*'''}), is given by 

(31) 
where i/^,'    is the first order derivative (Jacobian matrix) of 

/!•''■'(.) at a'tifcij- Note that (31) assumes that Zf^       originates 

from the target r; the result (31) does not depend upon the 
actual mesisurements. 

Step 3.3.   Measurement validation for sensor 1    (Vj e 
Mn)'- There is uncertainty regarding the measurements' ori- 
gins. Therefore, we perform validation for each target separately. 
There are two steps to measurement validation. First perform 
measurement validation for each target r (r e T)v) separately. 
For target r, the validation region is taken to be the same for 
all models, i.e., as the largest of them. Let S^' (r) denote the 

rizi X Tizi submatrix of Sj^' including the rows and columns of 
the latter numbered as (r — l)nzi + m, m = 1,2,- ■ ■ ,r. That 
is, 5^' (r) is based on the information relevant to target r only. 

Letz^'"' (r) denote the nil X 1 sub-column of Zj.' including the 
rows of the latter numbered as (r — l)nzi +m, m= 1,2, • • •, r; 
that is, zjj'' (r) is the mode-conditioned predicted measurement 
of target r for sensor 1. Let {\A\ — det(/l)) 

jr := arg \  max |S^'^(r)i \ . (32) 

Then measurement 2^^'' ( i = 1,2, •• • ,mi) is validated if and 
only if 

[-f-2i^''('-)]'[5^'^(r)]-l[^fc''^-?,-'(r)]<7 (33) 

where 7 is an appropriate threshold. The volume of the valida- 
tion region with the threshold 7 is 

^fc(0:=c„.,7"''/'|Sr''(r)r^ (34) 

where n^i is the dimension of the measurement and Cn^j is the 
volume of the unit hypersphere of this dimension (ci = 2, C2 = 
7r,C3 = 4^/3, etc.). Choice of 7 is discussed in more detail in 
([6], Sec. 2.3.2) (see also Sec. 4. later).   After performing the 

validation for each target separately, the volume of validation 
region for the whole target set is approximated by 

N 

V^fc'=S^*('')' (35) 

Step 3.4. State estimation with^ validated mecisure- 
ments from sensor 1 (VJ e Mn)- From among all 
the raw measurements from sensor 1 at time k, i.e., Z?  := 

■f^fc '•^fc '■■■'•^fc }i <lsfi"e the set of validated measure- 
ment for sensor 1 at time k as 

y'.--.{vTW\-^yr'') (36) 
where rn\ is total number of validated measurement for sensor 1 
at time k. and 

Hi) 
Vk 

i(ii) 
-fe (37) 

where 1 < ii < Z2 < • • • < 'mi ^ "^1 when mi ^ 0. Note that 
all targets share a common validated measurement set Y} from 
sensor 1. 

We now consider joint probabilistic data association across tar- 
gets following [6] and [3], but for global target state. A marginal 
association event 6ir is said to be effective at time k when the val- 
idated measurement j/^.'*' is associated with (i.e. originates from) 
target r (r = 0, • • ■, JV where r = 0 means that the measurement 
is caused by clutter). Assuming that there are no unresolved 
measurements, a joint association event © is effective when a 
set of marginal events {Oir} holds true simultaneously. That is, 
6 = n^'jflir; where Ti is the index of the target to which mea- 

surement yi^^' is associated in the event under consideration. 
Define the validation matrix (as in [6] and [3]) 

fi = [u^ir]    t = !,•■•,mi,     r = 0, •••,yV (38) 

where Wjr =1 if the measurement i lies in the validation gate of 
target r, else it is zero. A joint association event © is represented 
by the event matrix 

n(©) = pir(©)]    i = l,---,mi,    r = 0,---,JV       (39) 

where 

-(«) = {  S if     Oir C © 
otherwise. (40) 

A feasible association event is one where a measurement can have 
only one source 

N 

Y^:iir{e)^i   Vi, (41) 

and where at most one measurement can originate from a target 

5^(9) := ^2(^(0) < 1    forr=l,..-,iV. (42) 

The above joint events © are mutually exclusive and exhaus- 
tive. Following the definitions in [6] and [3], define the binary 
me£isurement association indicator 

N 

T-i(©) := _^'^ir(©),    1=1, •••,mi, (43) 

to indicate whether the validated measurement Vt} is associ- 
ated with a target in event ©. Further, the number of false 
(unassociated) measurements in event © is 

.^(e) = 2[i-^i(©)]- (44) 



We will limit our discussion to nonparametric JPDA [6].   One 
can evaluate the likelihood that the global mode is J as 

and 

, J,i ._ p{Y;^\Mi,zi- 

e 

(45) 

where, as in (9-31) of [3], the irrelevant conditioning terms have 
been omitted in the last line of (45) and the conditioning on 
mi is implicit in the event 9. The second term (apriori joint 
association probabilities) in the last line of (45) turns out to be 
(Sec. 6.2of [6], Sec. 9.3of [3]) 

N 

P{Q} = 2^ T\(PD)'-^^HI - PD)'-''^^^       (46) 
mi!    J--1- 

where PD is the detection probability at sensor 1 (assumed to 
be the same for all targets) and e > 0 is a "diffuse" prior (for 
nonparametric modeling of clutter) whose exact value is irrele- 
vant. Unlike [10], we do not assume that the states of the targets 
(including the modes) conditioned on the past observations are 
mutually independent. Then the first term in the last line of (45) 
can be written as 

p[Y^\e,Mi,Z'^-'] = V-'^^^^p[Y^(@}\M^,Z^-']        (47) 

where Y^ (©) C Y^ is a subset of the validated measurements 
Yf^, consisting of the measurements associated with the targets 
as specified by 0. The number of measurements in ijj (©) equal 
mi — i^(©) where i^(©) is the number of false alarms. 

Define a mi x [rni — <^(©)] matrix £2(9) as a submatrix of 
il{&) obtained by deleting the first column and all null columns 

of n(9). Then for a given 9, we have a measurement vector 

yj^l(9) of dimension (53i=i ''■•(Q))"^! given by 

>fc (©) = Un.r ® n'(9))col{3/fc'"', i = 1,2, • ■. ,mi}        (48) 

where we stack up all target-associated validated measurements 
in 9 in ascending order of targets, /„ is the n X n identity ma^ 
trix, and the symbol ® denotes the Kronecker product. Define a 
{{Tni—<j>{Q))nzi] X [iVni] matrix Hf^' (9) as a submatrix of H/^' 
(see (15)) obtained by deleting all i-th block rows (n^i x .) of 
H^'^ for which Si{Q) — 0. That is, we have modified (15) to keep 
only the block elements eissociated with target-associated mea- 
surements in 9. It then follows that the linearized measurement 
equation for Vj;? (9) is given by 

n'(©) ■■ ,.,1, 
<•'■ 

(49) 

Conditioned on the joint association event 9 and mode J, the 
"coupled" innovations is given by 

.,^•^9) = I   ^'=' (©) C--?,! (©)      if 5r(©) = 1 for some 
re{l,2,.-.,Ar}, 
otherwise. 

(50) 
where z^' (©) is a subvector of (30) obtained by deleting all i-th 

block rows (n^i x 1) of zj^.' for which <5i(©) = 0. The conditional 
pdf (probability density function) of the validated measurements 
y^ (©) given their origins (specified by ©) and the global target 
mode J, is given by 

where 

1. 

(51) 

Ar(^;y,P):=|27rP|-l/2exp[-±(x-y)'p-l(x-!/)]       (52) 

si'\Q) := E{ui'\Q)ui'\Q)'\Mi,Z>l-'} 

(53) 

The probability of the joint association event 9 given that global 
mode J is effective from time fc — 1 through fe is 

l3^'\e):=P{e\M^,Z^-\Y^} 

: -^p[Y^\e,Mi,z^-']P{e\Mi,z!^-'} = ip[Y^\e,M^,z^-']p{e} 
(54) 

where the first term can be calculated from (47)-(53), the sec- 
ond term from (46), and c is a normalization constant such that 
J:^P{&\MJ,Z^-\Y^} = I. 

Using XMJ._I (from (28)) and its covariance P^ik-i (from 

(29)), one computes the partial update i, ]^ and its covariance 

P^'l following the standard PDAF [6], [3], except that the global 

state is conditioned on 9, not the marginal events 0ir\ details 
follow. 

Kalman gain:   W/(©) = P4_IH;^''(©)'[5;^''(©)1-^     (55) 

Partial update of the state estimate: 

xl'lm := E{xk\e,Mi,Z^-\Y^} 

_ / ^fc|fc-l + ^k(®>k^i®)      if *'■(©) ^ 0 fo"" some l<r<N 

''k\k-l if(5r(9) = 0Vre{l,2,---,iV}. 

(56) 

^i\l ■■= E{x,\Mi^,Z^-\Y^} = ^/3;^'^9)J;;|i(©) (57) 

e 

Covariance of i. ]. : 

Pkil = Pk^k-i- E Pk'i®)^ki®)Sk'^^Wki&y 

Y,fi'k\QWi!{e)ui-\e) J^P'k\&Wi^{e)'^k-'(®) 

(58) 
where ©o denotes © for which <5r(©) = 0 Vr e {1,2,-••, AT}. 
Eqn. (58) follows in a manner similar to eqn. (3.4.2-10) in [6]. 

Step 3.5. The mode-conditioned predicted measure- 
ments for sensor 2 (VJ € MnY- Using (2) and (57), the 
"predicted" measurement for sensor 2 is given by 

n'':=h^-H^ti)- k\k' (59) 

Using the linearized version (3), the covariance of the global 

mode-conditioned residual v^'       := Z/^     ~^k    '® given by 

°k     — ^i^fc ''fc i^k.-^l       .J^fc) 

H',''p;^ilH','^' + Ri^ (60) 

,J,2 where i/^'    is the first order derivative (Jacobian matrix) of 

Step 3.6.   Measurement validation for sensor 2: This is 
similar to Step 3.3 where we replace S/^'   with S/' , Zj.  ' with 

2fc''\ mi with m2, Vi^{r) with \^(r), and V^ with V^. Details 
are similar to that in Step 3.3, hence are omitted. 



step 3.7. Update with validated measurements for sen- 
sor 2 (VJ e A^n): Tijis step is similar to Step 3.4. Using the val- 
idated measurements obtained from Step 3.6 and starting from 
i/jif and PjL,'. , one computes the final updates xjj.j, and P^fci 
and the likelihood 

Af :=p[y,2|M/,y,^2^M• (61) 

The details are similar to that in Step 3.4, hence are omitted. 

Step 3.8.   Update of mode probabilities (Vj e Mn, Vr 6 
TAT): 

(62) ^i := PlMilZ^] = -d-Ki^Ki 

where c is a normalization constant such that ^jA*fc = 1- For 
individual targets we have 

Mi'-(r) :=P[Mf (r)lZf] 

= E-   E     E   ••.f^^'--^'^-""'"^^'-^"'   (63) 
with J = (ii, ■ ■ ■ ,3N) in (62). 

Step 3.9. Combination of the mode-conditioned esti- 
mates (Vr 6 Tj>i): The final global state estimate update at 
time k is given by 

^fc|fc = ^^fcifcMfc (64) 
J 

and its covariance is given by 

The state estimate a:fc|fc(r) for target r is the rix-subvector of 

ifcjfc consisting of elements (r — l)nx -I- Jn, fn = 1,2, • ••,n.x. 
Remark 1. Compared to the uncoupled filtering of [10] 

where the equations are formulated conditioned on marginal as- 
sociation events Sjri here we have conditioning on joint associa^ 
tion events © for coupled filtering. Eqn. (51) does not decompose 
into the product of marginal probabilities as in [10]. 

4.    SIMULATION EXAMPLE 

We now consider tracking two highly maneuvering targets in 
clutter. We illustrate the proposed filtering algorithm via this 
example. 
The   Ttue   Trajectory: Target   1   starts   at   location 
[21689 10840 40] in Cartesian coordinates in meters. The ini- 
tal velocity (in m/s) is [—8.3 — 399.9 0] and the target stays at 
constant altitude with a constant speed of 400m/s. Its trajectory 
is: a straight line with constant velocity between 0 and 17s, a 
coordinated turn (0.15 rad/s) with constant acceleration of 60 
va/s^ between 17 and 30s, a straight line with constant velocity 
between 30 and 55s, a coordinated turn (0.1 rad/s) with constant 
acceleration of 40 m/s'^ between 55 and 70s, and a straight line 
with constant velocity between 70 and 87s. Target 2 starts at 
location [30000 — 3040 40] in Cartesian coordinates in meters. 
The initial velocity (in m/s) is [—382 157 0] and the target stays 
at constant altitude with a constant speed of 413m/s. Its trajec- 
tory is: a straight line with constant velocity between 0 and 44s, 
a coordinated turn (0.075 rad/s) with constant acceleration of 30 
m/s^ between 44 and 59s, and a straight line constant velocity 
between 59 and 87s. 
The Target Motion Models: These are patterned after 
[15]. The motion models for the two targets are identical. In 
each mode the target dynamics are modeled in Cartesian coor- 
dinates as Xk{r) = F{r)xk-\{r) + G(r)vk~i(r) where the state 
of the target is position, velocity and acceleration in each of the 
3 Cartesian coordinates (x, y and z). Thus x*;(r) is of dimen- 
sion 9 (n.i=9) for each target. Three models axe considered in 
the following discussion. They are exactly as in [10] to which 
one is refered for more details. The initial model probabilities 
for two targets are identical: JXQ = 0.8, ^Q = 0.1 and fi\ = 0.1. 

The mode switching probability matrix fqr two targets is also 
identical and is as in [10]. 
The Sensors: Two sensors (we assume collocation, and time 
synchronization of observations, etc.) are used to obtain the 
measurements. The measurements from sensor I for model j are 
2^ = M''(a;fc) -fty^' , / = 1,2, reflecting range and azimuth angle 
for sensor 1 (radar), and azimuth and elevation angles for sensor 
2 (infrared). For further details, see [10]. The measurement noise 
w^' for sensor / is assumed to be zero-mean white Gaussian with 
known covariances R} = diag[9r,goil = diag[400m^, 49mrad^] 
with gal and qr denoting the variances for the radar azimuth and 
range measurement noises, respectively, and P? = diag[ga2,9e] = 
diag[4mrad'^, 4mrad^] with qa2 and ge denoting the variances for 
the infrared sensor azimuth and elevation measurement noises, 
respectively. Both sensors are assumed to be located at the co- 
ordinate system origin. The sampling interval was T = Is and 
it was assumed that the probability of detection Pj) — 0.997 for 
both sensors. 
The Clutter: For generating false measurements in simula- 
tions, the clutter was assumed to be Poisson distributed with 
expected number of Ai = 20 x 10~®/m mrad for sensor 1 and 
Aa = 2 X 10~^/mrad-^ for sensor 2. These statistics were used 
for generating the clutter in all simulations. However, a non- 
parametric clutter model was used for implementing all the al- 
gorithms for target tracking. 
Other Parameters; The gates for setting up the validation 
regions for both the sensors were based on the threshold 7 = 16. 
With the measurement vector of dimension 2, this leads to a gate 
probability Pa = 0.9997 (see p. 96 of [6]). 
Simulation Results: The results were obtained from 100 
Monte Carlo runs. Fig. 1 shows the true trajectory of the two 
targets and the distance between the two targets as a function 
of time. The two targets start out far apart, move close to each 
other from 30 to 45 seconds, and then move apart again. Fig. 2 
shows the results of the proposed IMM/JPDACF based on 100 
runs. Fig. 3 shows the results of the uncoupled IMM/JPDAF of 
[10] based on 100 runs. It is seen from Fig. 3 that there is a loss 
of track (target swapping occurs in 2 out of 100 runs). 
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Figure 2. Performance of the proposed IMM/JPDACF based 
on 100 runs (read left to right, top to bottom): (a) RMSE in 
position, (b) RMSE in velocity, (c) RMSE in acceleration, (d) 
CV model probability P[Mi(r)|Zf] for r = 1,2. (RMSE = root 
mean-square error; CV = constant velocity) 
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Figure 3. Performance of the IMM/JPDAF of [10] based on 
100 runs (read left to right, top to bottom): (a) RMSE in po- 
sition, (b) RMSE in velocity, (c) RMSE in acceleration, (d) 
CV model probability P[Mi(r)]2f] for r = 1,2. (RMSE = root 
mean-square error; CV = constamt velocity) 


